Complementary note on:

Solution of a first-order differential equation with decaying gain

Maciej Michałek*
Chair of Control and Systems Engineering, Poznan University of Technology (PUT), Piotrowo 3A, 60-965 Poznań, Poland

March 17, 2014

Abstract

This note aims at complementing the formal analysis provided in papers [1] and [2] in relation to terminal convergence of a first-order differential equation with decaying gain. Considerations included in this note leads to the correction of an improper corollary formulated in [2] with respect to equation ${ }^{1}\{31\}$.

1 General considerations

Let us consider the first-order differential equation of the form

$$
\begin{equation*}
\dot{x}(t)=-c g(t) \sin x(t) \tag{1}
\end{equation*}
$$

where $c>0$ is a positive constant, t is time variable, and $g(t)$ is a bounded nonnegative function such that $g(t) \rightarrow 0$ as $t \rightarrow 0$. The term $c g(t)$ will be called the gain, which in our case terminally tends to zero (decays). Solution of (1) for $x \in[-\pi, \pi]$ can be written as

$$
\begin{equation*}
x(t)=2 \arctan \left[X_{0} \cdot \exp (-c I(0, t))\right], \quad t \geq 0 \tag{2}
\end{equation*}
$$

where $X_{0}=\tan \frac{x(0)}{2}$, and

$$
\begin{equation*}
I(0, t) \triangleq \int_{0}^{t} g(\xi) d \xi \tag{3}
\end{equation*}
$$

We are interested in the terminal behavior of solution (2) as $t \rightarrow \infty$. It directly depends on integral (3) evaluated in infinity, namely $I(0, \infty)$. The terminal convergence of $x(t)$ to zero (for $t \rightarrow \infty$) requires $I(0, \infty)=\infty$, which could be obtained for instance if $g(t)=g=$ const. But it is not the case here, since we assume $g(t) \rightarrow 0$. The fact that $g(t \rightarrow \infty) \rightarrow 0$ does not necessarily preclude convergence of $x(t)$ to zero. It depends of the rate of convergence of function $g(t)$. Thus, to make an appropriate conclusion about terminal behavior of $x(t)$ one has to investigate integrability of function $g(t)$.

2 Application of the above result to papers [2] and [1]

In paper [2], equation $\{31\}$ is in the form of (1) by taking $x:=e_{\theta}, c:=-\operatorname{sgn}\left(e_{x 0}\right) / L_{1}$, and $g(t):=\left\|\boldsymbol{h}^{*}(t)\right\|$. To check if the error $e_{\theta}(t)$ terminally converges to zero we must investigate integrability of $\left\|\boldsymbol{h}^{*}(t)\right\|$ (according to the result (2)-(3)). Recalling the results presented in [2] we know that $\boldsymbol{h}^{*}=\boldsymbol{h}^{*}(t)=k_{p} \boldsymbol{e}^{*}(t)-\eta \sigma\left\|\boldsymbol{e}^{*}(t)\right\| \boldsymbol{g}_{2}^{*}\left(\beta_{t}\right)$, thus (note: $\left\|\boldsymbol{g}_{2}^{*}\left(\beta_{t}\right)\right\| \equiv 1$ and $\left.\sigma \in\{-1,+1\}\right)$

$$
\begin{equation*}
\left\|\boldsymbol{h}^{*}(t)\right\| \leq\left(k_{p}+\eta\right)\left\|\boldsymbol{e}^{*}(t)\right\|=b\left\|\boldsymbol{e}^{*}(t)\right\|, \quad \eta \in\left(0, k_{p}\right) \tag{4}
\end{equation*}
$$

Since $b=\left(k_{p}+\eta\right)>0$ is a constant, integrability of $\left\|\boldsymbol{h}^{*}(t)\right\|$ is equivalent to integrability of $\left\|\boldsymbol{e}^{*}(t)\right\|$. According to the results presented in [3] (cf. page 53), for the set-point control task with the VFO controller one can write

$$
\begin{align*}
I(0, \infty) & =\int_{0}^{\infty}\left\|\boldsymbol{h}^{*}(t)\right\| d t \\
& \leq b \int_{0}^{\infty}\left\|e^{*}(t)\right\| d t=b \int_{0}^{\tau_{\gamma}}\left\|e^{*}(t)\right\| d t+b \int_{\tau_{\gamma}}^{\infty}\left\|e^{*}(t)\right\| d t \leq E_{\gamma}+b \int_{\tau_{\gamma}}^{\infty}\left\|e^{*}\left(\tau_{\gamma}\right)\right\| \exp \left(-\zeta_{\gamma}\left(t-\tau_{\gamma}\right)\right) d t \tag{5}
\end{align*}
$$

[^0]where $0 \leq E_{\gamma}<\infty, \tau_{\gamma} \geq 0, \zeta_{\gamma}>0$, and $\left\|e^{*}\left(\tau_{\gamma}\right)\right\|<\infty$. As a consequence, integral (5) is bounded, since
\[

$$
\begin{equation*}
I(0, \infty) \leq E_{\gamma}+b\left\|e^{*}\left(\tau_{\gamma}\right)\right\| / \zeta_{\gamma} . \tag{6}
\end{equation*}
$$

\]

Hence, one concludes that $I(0, \infty)<\infty$, and error $e_{\theta}(t)$ terminally does not converge to zero - in contrast to the incorrect statement about local asymptotic stability of equilibrium $e_{\theta 1 E}=0$ formulated in [2] on page 270 under equation $\{31\}$. Terminal value of e_{θ} depends on the value of integral (3) at infinity (for $t \rightarrow \infty$).

Similar arguments apply to the analysis done in paper [1] on page 512 where the integral defined by $\{64\}$ has been considered (cf. also Remark 2 on page 512). Upon $\{64\}$ one can write ${ }^{2}$

$$
\begin{align*}
I\left(\tau_{d}, \tau\right) & =\int_{\tau_{d}}^{\tau} s(\xi)\left\|\boldsymbol{h}^{*}(\overline{\boldsymbol{e}}(\xi))\right\| \cos e_{a}(\xi) d \xi \leq \int_{\tau_{d}}^{\tau}\left\|\boldsymbol{h}^{*}(\overline{\boldsymbol{e}}(\xi))\right\| d \xi \\
& \leq \int_{\tau_{d}}^{\tau}\left(k_{p}+\eta\right)\left\|\overline{\boldsymbol{e}}^{*}(\xi)\right\| d \xi=\left(k_{p}+\eta\right) \int_{\tau_{d}}^{\tau}\left\|\overline{\boldsymbol{e}}^{*}(\xi)\right\| d \xi \tag{7}
\end{align*}
$$

where we have used the fact that $\left\|\boldsymbol{h}^{*}(\overline{\boldsymbol{e}}(t))\right\|$ satisfies analogous relation to (4), and $\forall \tau \geq 0 s(\tau) \in(0,1]$. The right-hand side of (7) is finite for any $\tau<\infty$. Furthermore, for the asymptotic case with $\delta=0$ taken in $\{17\}$ one should consider now the integral at infinity

$$
\begin{equation*}
I\left(\tau_{d}, \infty\right) \leq\left(k_{p}+\eta\right) \int_{\tau_{d}}^{\infty}\left\|\bar{e}^{*}(\xi)\right\| d \xi<\infty \tag{8}
\end{equation*}
$$

which is finite by referring to similar reasoning as in (5)-(6). Hence, asymptotic convergence of joint angle (see Eq. \{62\})

$$
\begin{equation*}
\lim _{\tau \rightarrow \infty} \beta_{N}(\tau)=2 \arctan \left(B_{N d} \cdot \exp \left(\frac{\sigma}{L_{h N}} I\left(\tau_{d}, \infty\right)\right)\right), \quad\left(\sigma / L_{h N}\right)<0 \tag{9}
\end{equation*}
$$

to zero is not possible also in this case. However, according to (9) one may find that terminal value of β_{N} will be smaller for smaller value of offset $\left|L_{h N}\right|$. The above complementary analysis confirms and extends (for the case of $\delta=0)$ the statements included in Remark 2 in [1].

References

[1] M. Michałek. Application of the VFO method to set-point control for the N-trailer vehicle with off-axle hitching. International Journal of Control, 85(5):502-521, 2012.
[2] M. Michałek and K. Kozłowski. VFO tracking and set-point control for an articulated vehicle with off-axle hitched trailer. In Proc. of the European Control Conference, pages 266-271, Budapest, Hungary, 2009.
[3] M. Michałek and K. Kozłowski. Vector-Field-Orientation feedback control method for a differentially driven vehicle. IEEE Transactions on Control Systems Technology, 18(1):45-65, 2010.

[^1]
[^0]: *Corresponding author e-mail: maciej.michalek@put.poznan.pl
 ${ }^{1}$ References to particular equations taken from papers $[1-3]$ are indicated by numbers in $\{\cdot\}$ brackets.

[^1]: ${ }^{2}$ Henceforth, the notation and symbols are used according to [1].

