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E3 Parametric identification with Recursive-Least-Squares

This exercise is devoted to a recursive version of the LS method of parametric identification.
In comparison to the batch-type LS estimator (see exercise E3), the use of recursive algorithm
allows one to decrease the overall computational complexity (e.g. lack of a matrix inversion)
and to use the persistently updated model of a plant in real-time. The latter feature is especially
important in the case of MIAC-type adaptive control techniques.

1 Identification of a dynamic plant with constant parameters

The recursive identification algorithm RLS (Recursive LS) results from a transformation of
the batch-type LS estimator introduced in exercise E3. Therefore RLS can be considered as a
recursive/recurrent version of the LS estimator, which asymptotically has statistical properties
equivalent to the LS method.

Let us assume a structure of the identified dynamic plant represented by the following
difference equation:

y(n) = ϕ⊤(n)p0 + v(n), (1)

where v(n) is a random noise (white or colored), and p0 is the vector of true plant parameters.

Computations in the RLS method are performed using only a single set of input-output
data in each iteration of the algorithm. Therefore, the current estimate p̂(n) of parameters is
periodically updated using the following general scheme

p̂(n) = p̂(n− 1) + k(n) ε(n) (2)

where k(n) ε(n) is a correction term evaluated based on a new dataset. The term ε(n) =
y(n) − ϕ⊤(n) p̂(n − 1) is a current one-step-ahead prediction error (computed based on the
previous estimate p̂(n − 1)), and k(n) ∈ R

d is a vector of time-varying gains which depends
on a current covariance matrix of the estimated parameters. The full computational scheme of
the RLS method is as follows:

p̂LS(n) = p̂LS(n− 1) + k(n) ε(n), (3)

ε(n) = y(n) − ϕ⊤(n) p̂LS(n− 1), (4)

k(n) = P LS(n)ϕ(n), (5)

P LS(n) = P LS(n− 1)−
P LS(n− 1)ϕ(n)ϕ⊤(n)P LS(n− 1)

1 +ϕ⊤(n)P LS(n− 1)ϕ(n)
, (6)

where the above sequence should be computed in the following order: (6)→(5)→(4)→(3).
Worth mentioning that equation (3) defines in fact a particular (computational) dynamical
system, which starting from initial conditions p̂(0) and P (0) will evolve in the discrete time
through the transient phase until reaching the steady state (theoretically reached at infinity).
After vanishing of the transient phase (in practice assumed to vanish after considerably large
value of N), the estimate p̂(n) in time instant n = N −1 should correspond to the value of the
batched LS estimator computed upon the dataset of N measurements. Initial conditions p̂(0)
and P (0) for the recurrence (3)-(6) can be selected using various approaches. Two of them are:
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W1. choice based on a priori knowledge of plant dynamics,

W2. arbitrary choice, e.g. p̂(0) := 0, P (0) := ρ · I, where ρ≫ 0, and I ∈ R
d×d is the identity

matrix.

The inversion of matrix P (0) can be interpreted as a level of confidence for initial estimate
p̂(0); moreover cov[p̂(n)] = σ2P (n). One should also notice the crucial feature of the covariance
matrix computed based on equation (6), namely

P (n)
n→∞
−→ 0, (7)

which means that estimate p̂(n) for n→∞ will converge to some constant terminal value p̂lim
(with probability equal to 1). The terminal estimate p̂ will be close to the true parameters p0
if the following assumptions are satisfied:

A1. noise v(n) in structure (1) is white,

A2. structures of the model and the plant are the same,

A3. input signal u(n) is persistently exciting.

1.1 Dynamic plant identification using the RLS method.

• File PlantARMAX.mdl contains a discrete-time dynamic plant described by the
following structure:

y(n) =
b20q

−2

1 + a10q−1 + a20q−2
u(n) +

1 + c10q
−1

1 + a10q−1 + a20q−2
e(n), (8)

where a10, a20, b20 and c10 represent the true plant parameters, while e(n) is a
white noise. Note that (8) belongs to the ARMAX model family of the following
general form: Ay = Bu + Ce ⇒ y = Gu + He, G = B/A, H = C/A. If we
assume that c10 := 0, then we obtain the particular ARX form of the model with
white noise signal on the right-hand side. For c10 6= 0 the noise (1+ c10q

−1)e(n) is
colored with all the consequences of this fact.

• Initialize the following global variables: Tp=0.1, Tend=1000, Td=1500 which rep-
resent, respectively, the sampling time, the simulation time, and the time when
parameter b20 will intentionally change (here Tend<Td, so the change will never
occur – the plant with constant parameters).

• Initialize (as a global variable) the following true plant parameter c10 = 0 (that
is, we assume that v(n) in (1) is a white noise). Note that c10 is unknown in
practice! Perform the identification procedure of plant (8) using the RLS method
and applying a symmetrical square-wave input signal u(n) with amplitude A = 1
and frequency fu = 0.2Hz. Analyze estimates p̂(n) for various values of parameter
ρ in a choice of initial matrix P (0) (see W2). Investigate influence of sampling
time Tp to the quality of identification – the suggested set of values is (in [s]):

Tp ∈ {0.01; 0.1; 0.5; 1.0; 2.0}.
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• Implement the simulated model computed upon a current estimate of parame-
ters. Compare an output of the plant y(n) (as well as y0(n)) with an output of
the simulated model in response to the same input signal u(n). Assess quality of
identification.

• Analyze a time-plot of a trace of covariance matrix P (n) during the identification
process (use command trace(P)).

• Initialize the true parameter c10 = 0.7 (that is, we assume that v(n) in (1) is a
colored noise). Perform the RLS identification procedure again and analyze time-
evolution of estimate p̂(n).

2 Identification of a dynamic plant with time-varying parame-

ters

Until now, we assumed that parameters of the plant were constant during plant operation.
Such an assumption, however, is not always valid. Numerous examples can be pointed out in
which the dynamics changes over time, either abruptly but occasionally (e.g. once for some
period of time) or slowly but persistently1. In that case, the ability of the algorithm to track
the time-varying parameters in real time in order to possess the up-to-date model of the plant
is highly desirable. The method presented in the previous section did not have the ability to
adapt to the parameter variation, since the trace of the matrix P (n) converges asymptotically
to zero in time and hence the ability to correct the vector of estimated parameters vanishes in
time. In order to keep the tracking (adaptation) ability of the estimator one has to assure that
matrix P (n) does not converge to zero in time. It can be done using two basic approaches:

• by introducing the so-called forgetting factor λ ∈ (0, 1) (usually used in the case of slowly-
varying parameters) to matrix P (n); equations of the RLSλ method take the following
form:

p̂(n) = p̂(n− 1) + k(n) ε(n), (9)

ε(n) = y(n) − ϕ⊤(n) p̂(n− 1), (10)

k(n) = P (n)ϕ(n), (11)

P (n) =
1

λ

[

P (n− 1)−
P (n− 1)ϕ(n)ϕ⊤(n)P (n− 1)

λ+ϕ⊤(n)P (n− 1)ϕ(n)

]

, (12)

• by reseting the covariance matrix P , which means re-initializing matrix P when a pre-
scribed condition is satisfied (usually used in order to track the parameters that change
rarely but abruptly):

R1. periodic reseting

P (n) := ρI when n = kT, k = 1, 2, . . . (13)

R2. reseting using a condition related to the prediction error or output error

P (n) := ρI when |ε(n)| > εmax or |εOE(n)| > εmax (14)

R3. reseting using a condition related to the trace of the covariance matrix

P (n) := ρI when tr(P (n)) < Pmin, (15)

where ρ≫ 0, T, εmax > 0, and Pmin > 0 are all the design parameters.

1We assume a change of parameters only – a structure of the model remains the same.



IAR-PUT: Laboratory of Adaptive Control – E3 4

The cost one pays for introducing of any from the above modifications corresponds to the
increased variance of the parameters estimates during the identification process. Hence, the
modifications corresponding to the choice of values for λ, ρ, T, εmax, and Pmin should result
from a compromise between the tracking ability of the estimator and a level of fluctuations of
the estimated parameters.

2.1 Adaptive identification of a dynamic plant using the modified RLS method.

• Initialize parameters Tend=1000, Td=500 (a step change of parameter b20(n) of
plant (8) will take place at time instant n = 500), and c10 = 0 (that is, we assume
that v(n) in (1) is a white noise).

• Using the RLSλ method, perform the identification procedure of plant (8) selecting
the forgetting factor λ from the range [0.98; 0.999]. Verify the influence of forgetting
factor λ ∈ (0, 1) on the identification quality and on fluctuations of the estimated
parameters. Pay special attention on the tracking ability of the estimator with
respect to parameter b20(n). Analyze a time-plot of a trace of covariance matrix
P (n) during the identification process.

• Analyze quality of the adaptive identification when applying the covariance matrix
resetting (utilize criteria R1 to R3). Verify the influence of coefficient ρ on the
quality of identification and on time-variability of the estimated parameters.

• Verify the identification quality of the RLSλ method in the case of the colored
noise (that is, for c10 = 0.7).
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